Preparation and Spectroscopic Characteristics of Geometrical Isomers of Bis[1,2-bis(dimethylphosphino)ethane]cobalt(III) Complexes with Thiolate Ligands

Takumi Konno,* Zhi-Ping Bai, Ken-ichi Okamoto, and Jinsai Hidaka Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305 (Received June 5, 1989)

The thiolato cobalt(III) complexes, $[Co(SR)_2(dmpe)_2]^+$, where R denotes CH_3 , C_2H_5 , or $CH_2C_6H_5$ and dmpe denotes 1,2-bis(dimethylphosphino)ethane, were newly prepared from *trans*- $[CoCl_2(dmpe)_2]^+$ and monothiolate ligands. The cis and trans isomers were formed for $R=CH_3$ and $CH_2C_6H_5$, while only the trans isomer was formed for $R=C_2H_5$. These isomers were assigned on the basis of the ¹H NMR (500 MHz) and absorption spectra in comparison with those of the newly prepared $[Co(SCH_2CH_2S)(dmpe)_2]^+$ complex. The trans isomer showed the sulfur-to-cobalt charge-transfer band at lower energy than that of the cis isomer.

Cobalt(III) complexes with two or three thiolato donor atoms prefer to take the cis(S) geometry, 1-3) and no trans isomer has been obtained for [Co(SR)2- $(amine)_4$]+ (R=CH₃, C₂H₅, CH₂C₆H₅, and C₆H₅).4) On the other hand, chelating diphosphine ligands, such as dmpe (1,2-bis(dimethylphosphino)ethane) and depe (1,2-bis(diethylphosphino)ethane), tend to favor the formation of trans-[CoX₂(diphosphine)₂]+ (X=Cl, Br, and I).5-8) This trend reveals that the trans(S)geometry is possibly formed in the [Co(SR)2(diphosphine)₂]-type complex. The present work is concerned with the preparation of $[Co(SR)_2(dmpe)_2]^+$ (R=CH₃, C_2H_5 , and $CH_2C_6H_5$), and the trans(S) isomers are presented. The isomers obtained were characterized on the basis of the ¹H NMR (500 MHz) and absorption spectra in comparison with those of the newly prepared [Co(SCH₂CH₂S)(dmpe)₂]⁺. This is the first example of cobalt(III) complexes containing both diphosphine and monothiolate ligands.

Experimental

- A) Preparation of Complexes. (1) The starting complex, trans-[CoCl₂(dmpe)₂]ClO₄, was prepared by the method of Ohishi et al.⁶ Found: C, 26.91; H, 6.13%. Calcd for [CoCl₂(dmpe)₂]ClO₄·0.5H₂O=C₁₂H₃₃O_{4.5}Cl₃P₄Co: C, 26.76; H, 6.18%.
- (2) cis- and $trans-[Co(SCH_3)_2(dmpe)_2]X$ (X=PF₆ and To a solution containing 0.1 g of trans-[CoCl₂(dmpe)₂]ClO₄·0.5H₂O (0.19 mmol) in 20 cm³ of degassed methanol was added 0.06 g of NaSCH₃ (0.86 mmol) in 1 cm3 of methanol. The mixture was stirred at 50 °C for 30 min under a nitrogen atmosphere, whereupon the solution became deep brown. To this was added 1 g of NaPF₆ in 10 cm³ of water and the solution was allowed to stand in a refrigerator overnight. The resulting brown crystals of trans-[Co(SCH₃)₂(dmpe)₂]PF₆ (A-1) were collected by filtration. The filtrate was kept in a freezer overnight and the resulting A-1 precipitate was again filtered off. To this filtrate was added 0.1 g of NaB(C₆H₅)₄ in 2 cm³ of methanol. After the mixture was allowed to stand in a refrigerator for 1 h, the resulting greenish-brown precipitate of cis-[Co-(SCH₃)₂(dmpe)₂]B(C₆H₅)₄ (A-2) was collected by filtration. The A-2 isomer was recrystallized from acetone by adding a

small amount of NaB(C_6H_5)₄ in methanol. **A-1** isomer: Yield: 0.05 g, 45%. Found: C, 28.17; H, 6.47%. Calcd for [Co(SCH₃)₂(dmpe)₂]PF₆=C₁₄H₃₈F₆P₅S₂Co: C, 28.10; H, 6.40%. **A-2** isomer: Yield: 0.03 g, 20%. Found: C, 59.04; H, 7.66%. Calcd for [Co(SCH₃)₂(dmpe)₂]B(C₆H₅)₄: C, 59.07; H, 7.57%.

The trans (A-1) and cis (A-2) isomers of $[Co(SCH_3)_2-(dmpe)_2]^+$ were also formed in nearly the same ratio as that observed above, using $[Co(CO_3)(dmpe)_2]ClO_4 \cdot 2.5H_2O \cdot Na-ClO_4^9$ as the starting complex instead of *trans*- $[CoCl_2-(dmpe)_2]ClO_4 \cdot 0.5H_2O$.

- (3) trans-[Co(SC₂H₅)₂(dmpe)₂]PF₆. This complex (**B-1**) was prepared by a method similar to that described above for trans-[Co(SCH₃)₂(dmpe)₂]PF₆ (**A-1**), using 0.06 cm³ of neat HSC₂H₅ (0.81 mmol) and 0.3 cm³ of 1 mol dm⁻³ NaOH (0.30 mmol) instead of NaSCH₃. No significant formation of the cis isomer was noticed in this reaction or in a reaction where [Co(CO₃)(dmpe)₂]ClO₄·2.5H₂O·NaClO₄ was used as the starting complex instead of trans-[CoCl₂(dmpe)₂]ClO₄·0.5H₂O. Yield: 0.04 g, 34%. Found: C, 30.55; H, 6.68%. Calcd for [Co(SC₂H₅)₂(dmpe)₂]PF₆=C₁₆H₄₂F₆P₅S₂Co: C, 30.68; H, 6.76%.
- (4) cis- and trans- $[Co(SCH_2C_6H_5)_2(dmpe)_2]X$ (X=ClO₄ and $B(C_6H_5)_4$). The two isomers, trans (C-1) and cis (C-2), of $[Co(SCH_2C_6H_5)_2(dmpe)_2]^+$ were prepared and separated by a method similar to that described above for [Co(SCH₃)₂-(dmpe)₂]⁺, using 0.1 cm³ of neat HSCH₂C₆H₅ (0.85 mmol) and 0.3 cm3 of 1 mol dm-3 NaOH (0.30 mmol) instead of The trans (C-1) isomer was obtained as the perchlorate salt using a small amount of a saturated NaClO₄ solution instead of NaPF₆. It was found from the absorption and ¹H NMR (500 MHz) spectral measurements that the tetraphenylborate salt is the cis (C-2) isomer containing a small amount of the trans (C-1) isomer. C-1 isomer: Yield: 0.045 g, 34%. Found: C, 44.12; H, 6.72%. Calcd for [Co- $(SCH_2C_6H_5)_2(dmpe)_2 |CIO_4=C_{26}H_{46}O_4P_4S_2CICo: C, 44.29; H,$ 6.58%. B(C₆H₅)₄ salt: Yield: 0.03 g, 17%. Found: C, 63.98; H, 7.06%. Calcd for $[Co(SCH_2C_6H_5)_2(dmpe)_2]B(C_6H_5)_4 \cdot H_2O =$ C₅₀H₆₄BP₄S₂Co·H₂O: C, 63.83; H, 7.07%
- (5) $[Co(SCH_2CH_2S)(dmpe)_2]PF_6$. This complex was prepared by a method similar to that described for $[Co(SCH_3)_2(dmpe)_2]PF_6$, using 0.05 cm³ of neat HSCH₂-CH₂SH (0.60 mmol) and 0.3 cm³ of 1 mol dm⁻³ NaOH (0.30 mmol) instead of NaSCH₃. The reaction was conducted at room temperature for 30 min. Yield: 0.04 g, 35%. Found: C, 28.60; H, 6.02%. Calcd for $[Co(SCH_2CH_2S)-(dmpe)_2]PF_6=C_{14}H_{36}F_6P_5S_2Co$: C, 28.20; H, 6.08%.

B) Measurements. The electronic absorption spectra were recorded in CH₃CN with JASCO UVIDEC-505 and UVIDEC-610 spectrophotometers at ambient temperatures. The 500 MHz ¹H NMR spectra were recorded with a BRUKER-AM-500 NMR spectrometer in CD₃CN at the probe temperature. Tetramethylsilane (TMS) was used at the internal reference.

Results and Discussion

Two geometrical isomers, cis and trans, are possible for $[Co(SR)_2(dmpe)_2]^+$ (R=CH₃, C₂H₅, and CH₂C₆H₅), while only one isomer having the cis(S) configuration is possible for $[Co(SCH_2CH_2S)(dmpe)_2]^+$ (Fig. 1). In the 500 MHz ¹H NMR spectrum (Fig. 2), $[Co(SCH_2-CH_2S)(dmpe)_2]^+$ exhibits characteristic P-methyl signals in the region of δ 1.4—1.6 (from TMS). That is, four sets of signals due to the eight P-CH₃ groups in the complex are observed (Fig. 2a), reflecting the C₂ symmetry of the complex. A quite similar ¹H NMR spectral pattern is observed for the **A-2** isomer of $[Co(SCH_3)_2(dmpe)_2]^+$, though two signals due to the two S-CH₃ groups appear (δ 1.589 and 1.594) besides four sets of signals due to the eight P-CH₃ groups in the region of δ 1.4—1.6 (Fig. 2b). On the

Fig. 1. Two geometrical isomers of $[Co(SR)_2-(dmpe)_2]^+$.

other hand, the A-1 isomer of [Co(SCH₃)₂(dmpe)₂]⁺ shows one set of P-methyl signals which appears as a quintet at δ 1.629 (J=2.2 Hz) and one singlet S-methyl signal at δ 1.304 (Fig. 2c). The starting trans-[CoCl₂(dmpe)₂]⁺ complex also gave one set of quintet P-methyl signals at δ 1.572 (J=2.4 Hz). ¹H NMR spectral behavior indicate that the A-1 and A-2 isomers are trans- and cis-[Co(SCH₃)₂(dmpe)₂]⁺, respectively. The ¹H NMR spectral behavior of the **B-1** isomer of $[Co(SC_2H_5)_2(dmpe)_2]^+$ and the **C-1** isomer of [Co(SCH₂C₆H₅)₂(dmpe)₂]⁺ are similar to that of $trans-[Co(SCH_3)_2(dmpe)_2]^+$ (A-1), showing one set of quintet signals due to the eight P-CH3 groups in the complex (δ 1.623 (J=2.2 Hz) for **B-1** and δ 1.718 (J=2.1 Hz) for C-1). Furthermore, the **B-1** isomer shows one set of triplet signals (δ 1.061, J=7.3 Hz) and one set of quartet signals (δ 1.718, J=7.3 Hz) due to the two SC₂H₅ groups, and the C-1 isomer shows one singlet signal due to the two S-CH₂- groups at δ 2.931. Accordingly, the B-1 and C-1 isomers can be assigned to the trans(S) configuration. In the ¹H NMR spectrum of the tetraphenylborate salt of [Co(SCH₂C₆H₅)₂-(dmpe)₂]⁺, four sets of P-methyl signals are observed (centered at δ 1.486, 1.566, 1.629, and 1.775) as in the case of cis-[Co(SCH₃)₂(dmpe)₂]⁺ (A-2), in addition to one set of quintet P-methyl signals which corresponds to the signals arising from trans-[Co(SCH₂C₆H₅)₂-(dmpe)₂]⁺ (C-1). The ¹H NMR spectrum suggests that the tetraphenylborate salt is the cis isomer containing a small amount of the trans one. This is supported by the fact that absorption spectral behavior of this salt agrees with that of cis-[Co(SCH₃)₂(dmpe)₂]⁺ (Fig. 3).

As shown in Fig. 3 and Table 1, the absorption spectrum of *cis*-[Co(SCH₃)₂(dmpe)₂]⁺ is quite similar to that of [Co(SCH₂CH₂S)(dmpe)₂]⁺ in the whole

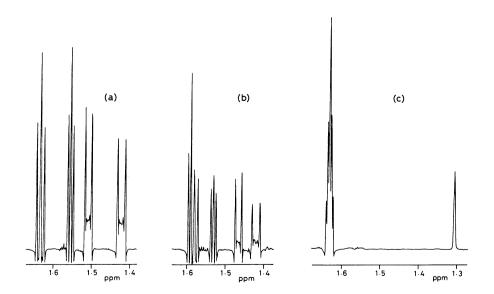


Fig. 2. ¹H NMR (500 MHz) spectra of [Co(SCH₂CH₂S)(dmpe)₂]⁺ (a), cis-[Co(SCH₃)₂(dmpe)₂]⁺ (b), and trans-[Co(SCH₃)₂(dmpe)₂]⁺ (c) in CD₃CN (TMS reference).

Table 1. Absorption Spectral Data of the Complexes in CH₃CN

Complex	$\sigma/10^3{\rm cm^{-1}}({\rm log}\epsilon/{\rm mol^{-1}}{\rm dm^3cm^{-1}})$				
[Co(SCH2CH2S)(dmpe)2]+	19.4(2.7sh)	22.12(3.02)	28.9(3.4sh)	33.17(4.16)	43.48(4.25)
cis-[Co(SCH ₃) ₂ (dmpe) ₂]+	17.50(2.61)	21.7(3.0sh)	26.32(3.38)	32.15(4.16)	42.55(4.50)
$trans-[Co(SCH_3)_2(dmpe)_2]^+$	18.73(2.39)	28.53(4.05)	41.15(4.26)		
$trans-[Co(SC_2H_5)_2(dmpe)_2]^+$	18.87(2.35)	28.65(4.06)	41.32(4.26)		
trans-[Co(SCH ₂ C ₆ H ₅) ₂ (dmpe) ₂] ⁺	17.91(2.48)	28.01(4.36)	42.7(4.4sh)		

sh denotes a shoulder.

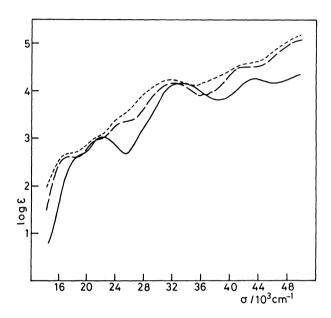


Fig. 3. Absorption spectra of [Co(SCH₂CH₂S)-(dmpe)₂]+ (---), cis-[Co(SCH₃)₂(dmpe)₂]+ (----), and [Co(SCH₂C₆H₅)₂(dmpe)₂]+ (-----) in CH₃CN.

region, though the absorption components of the former complex shift to a somewhat lower energy than those of the latter. On the other hand, the absorption spectral behavior of trans-[Co(SCH₃)₂(dmpe)₂]⁺ differs significantly from those of [Co(SCH₂CH₂S)(dmpe)₂]⁺ and cis-[Co(SCH₃)₂(dmpe)₂]⁺, especially in the near-UV region (Fig. 4). Namely, the trans SCH₃ isomer exhibits an intense absorption band at 28.53×10^3 cm⁻¹, while the cis SCH3 isomer exhibits a broad intense band at 32.15×10³ cm⁻¹. The corresponding broad intense band of [Co(SCH₂CH₂S)(dmpe)₂]⁺ appears at 33.17×10⁸ cm⁻¹ (Fig. 3). Quite similar intense absorption bands, which have been assigned to the S-to-Co charge-transfer (SCCT) bands, were observed for the trans(S) and cis(S) isomers of [Co(quadridentate-SNNS)(diamine)]⁺: 10) a sharp band at ca. 30×10^3 cm⁻¹ for the trans(S) isomer and a broad band at ca. 34×10^3 cm⁻¹ for the cis(S) isomer. For the present [Co(thiolato)₂(diphosphine)₂]⁺-type complexes, it may be considered that the coordinated diphosphine ligand contributes to the absorption spectral behavior in this As shown in Fig. 4, however, transregion. $[CoCl_2(dmpe)_2]^+$ exhibits an intense band at 35.46×10³ cm⁻¹, which has been assigned as arising from the Pto-Co charge-transfer (PCCT) transition.⁸⁾ Taking

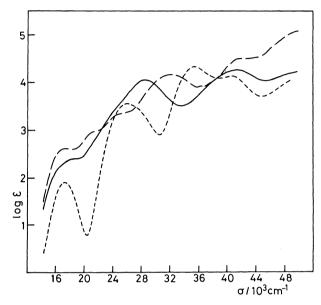


Fig. 4. Absorption spectra of trans-[Co(SCH₃)₂-(dmpe)₂]⁺ (----), cis-[Co(SCH₃)₂(dmpe)₂]⁺ (----), and trans-[CoCl₂(dmpe)₂]⁺ (-----) in CH₃CN.

this fact into consideration, it is probable that the intense bands for the present isomers are due to the SCCT transition rather than to the PCCT transition. In order to confirm the absorption spectral behavior of the trans and cis isomers, [Co(SC₂H₅)₂(dmpe)₂]⁺ and $[Co(SCH_2C_6H_5)_2(dmpe)_2]^+$ were also newly prepared. The absorption spectra of the trans SC₂H₅ and SCH₂C₆H₅ isomers coincide well with that of trans-[Co(SCH₃)₂(dmpe)₂]⁺ over the whole region (Fig. 5 and Table 1), showing the SCCT band at ca. 28.5×10³ cm⁻¹. The tetraphenylborate salt of [Co-(SCH₂C₆H₅)₂(dmpe)₂]⁺, which is the cis isomer containing a small amount of the trans one (vide supra), gives a broad SCCT band at ca. 32×103 cm⁻¹ (Fig. 3), as in the case of cis-[Co(SCH₃)₂(dmpe)₂]⁺. Thus, it is also valid for the present dmpe complexes that the cis(S)- and trans(S)-type isomers are discriminated on the basis of the relative position of the SCCT bands.10-13) The cis and trans isomers of [Co(SCH₃)₂-(dmpe)2]+ also show noticeable absorption spectral difference in the visible region (Fig. 4 and Table 1). It has been reported that the cis(S) and trans(S) isomers of [Co(quadridentate-SNNS)(diamine)]+ can be assigned by the splitting pattern of the first d-d absorption bands.¹⁰⁾ However, it is difficult for the

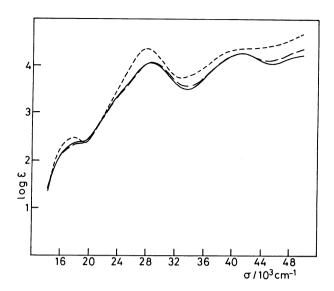


Fig. 5. Absorption spectra of trans-[Co(SCH₃)₂-(dmpe)₂]⁺(---), trans-[Co(SC₂H₅)₂(dmpe)₂]⁺(----), and trans-[Co(SCH₂C₆H₅)₂(dmpe)₂]⁺(-----) in CH₃CN.

present dmpe complexes to assign the two isomers on the basis of the absorption spectral difference in the visible region.

In this study, a direct treatment of trans-[CoCl2-(dmpe)₂]⁺ with monothiolate ligands produced the $[Co(SR)_2(dmpe)_2]^+$ (R=CH₃, C₂H₅, and CH₂C₆H₅) complexes. The trans isomer was formed for all three complexes, while the cis isomer was formed for two complexes ($R=CH_3$ and $CH_2C_6H_5$). Furthermore, each of the two cis isomers was formed in small amount compared with the corresponding trans isomer. A quite similar preparative result was also obtained by a method in which [Co(CO₃)(dmpe)₂]⁺ was used as the starting complex instead of trans-[CoCl₂(dmpe)₂]⁺. These results are in contrast to the cis(S) selective formation as found in [Co(L-cysteinato-N,S₃ $]^{3-,1,2}$ [Co(D-penicillaminato-N,O,S)₂ $]^{-,3}$ and $[Co(SR)_2(amine)_4]^+$ (R=CH₃, C₂H₅, CH₂C₆H₅, and C_6H_5),4) and indicate that the trans(S) geometry is dominant for [Co(SR)2(dmpe)2]+ complexes. Namely, the dmpe ligand functions dominantly in forming trans-[Co(SR)2(dmpe)2]+. It has been reported that the

cis-[CoX₂(dmpe)₂]⁺ (X=Cl, Br, and I) complexes isomerized to the trans isomer and the isomerization reaction was accelerated by ultraviolet light.⁸⁾ In contrast to cis-[CoX₂(dmpe)₂]⁺, the present cis and trans isomers of [Co(SR)₂(dmpe)₂]⁺ in solution are fairly stable in the dark; the intensities of their SCCT bands in CH₃CN or CH₃CN-H₂O (4:1) decreased slightly with time at room temperature (ca. 1.5% in 60 min). No isomerization occurred for the present isomers, even when the solution was exposed to ultraviolet light, though decomposition was promoted. These facts suggest that the cis(S) preference of the thiolate ligand prevents the isomerization to the trans(S) isomer.

References

- 1) R. D. Gillard and R. Maskill, *Chem. Commun.*, **1968**, 160.
- 2) M. Kita, K. Yamanari, and Y. Shimura, Bull. Chem. Soc. Ipn., 55, 2873 (1982).
- 3) K. Okamoto, K. Wakayama, H. Einaga, S. Yamada, and J. Hidaka, Bull. Chem. Soc. Jpn., 56, 165 (1983).
- 4) H. Umehara, K. Okamoto, and J. Hidaka, presented at the 35th Symposium on the Coordination Chemistry of Japan, Hiroshima, 1985, Abstract No. 2A19; T. Konno, H. Umehara, K. Okamoto, and J. Hidaka, to be submitted.
- 5) C. E. Wymore and J. C. Bailar, Jr., J. Inorg. Nucl. Chem., 14, 42 (1960).
- 6) T. Ohishi, K. Kashiwabara, and J. Fujita, *Chem. Lett.*, 1981, 1371.
- 7) H. C. Jewiss, W. Levason, and M. Webster, *Inorg. Chem.*, **25**, 1997 (1986).
- 8) T. Ohishi, K. Kashiwabara, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **60**, 575 (1987).
- 9) T. Ohishi, K. Kashiwabara, J. Fujita, S. Ohba, T. Ishii, and Y. Saito, *Bull. Chem. Soc. Jpn.*, **59**, 385 (1986). Found: C, 22.59; H, 5.30%. Calcd for $[Co(CO_3)(dmpe)_2]-ClO_4\cdot 2.5H_2O\cdot NaClO_4=C_{13}H_{37}O_{13.5}NaP_4Cl_2Co: C, 22.75; H, 5.44%.$
- 10) K. Yamanari, N. Takeshita, and Y. Shimura, *Bull. Chem. Soc. Jpn.*, **57**, 1227 (1984).
- 11) J. Hidaka, S. Yamada, and Y. Shimura, *Chem. Lett.*, **1974**, 1487.
- 12) K. Akamatsu, J. Hidaka, and Y. Shimura, *Bull. Chem. Soc. Jpn.*, **50**, 533 (1977).
- 13) T. Konno, K. Okamoto, and J. Hidaka, *Bull. Chem. Soc. Jpn.*, **56**, 2631 (1983).